If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+1.4142x-2=0
a = 1; b = 1.4142; c = -2;
Δ = b2-4ac
Δ = 1.41422-4·1·(-2)
Δ = 9.99996164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1.4142)-\sqrt{9.99996164}}{2*1}=\frac{-1.4142-\sqrt{9.99996164}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1.4142)+\sqrt{9.99996164}}{2*1}=\frac{-1.4142+\sqrt{9.99996164}}{2} $
| -7=5n-8n=-7n+5 | | F(x)=x2+3 | | 34=12x-3 | | 5=x+2.50 | | 6+2.5x=-14 | | z+4/9-6=5 | | 3/9=x/90 | | 5f-1=3f-3 | | 4(g+5)=36 | | 5x+4x+2+5=70 | | 6x+4x+1+2=83 | | 30+6y=-4y-10 | | 2/8=x/56 | | 2x²-7x-9=0 | | 32x+6=12 | | 8x-3x-19=36 | | a^2-10a=4 | | 7x-2x-24=21 | | 10=9x-3 | | 7x-6x-30=37 | | 9x+X-7=14 | | 34+x/12=39 | | 34(n+3)=9 | | X+6-a=-4 | | -24y=-144 | | Y1/4*y1/4*7=273+y1/2 | | 4/18=4/c | | 2t+6=(t+3) | | X7/5/9=169/x3/5 | | 6d-5d+3=28 | | 8x^-18=0 | | x(2x)+4=160 |